Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci ; 89(4): 2124-2136, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462841

ABSTRACT

In this study, we pursued the heterologous expression of the xylanase gene from Trichoderma atroviride, a native fungus in the province of Misiones, and used it to enhance the textural properties of baked goods through varying enzymatic concentrations. This marks the inaugural exploration into its functionality in the context of bread production. The recombinant xylanase exhibited improved activity, reaching 36,292 U L-1, achieved by supplementing the culture medium with dextrose. Following the optimization of recombinant xylanase concentration, promising results emerged, notably reducing hardness and chewiness parameters of bread significantly. Our findings underscore the potential of this native fungal enzyme for industrial processes, offering a sustainable and efficient means to enhance the quality of baked goods with broad implications for the food industry. No prior research has been documented on the heterologous expression of the xylanase gene derived from T. atroviride, from the Misiones rainforest, expressed in Kluyveromyces lactis. PRACTICAL APPLICATION: This research, focusing on the isolation and cloning of xylanase enzyme from Trichoderma atroviride, a native fungus in the province of Misiones, offers a valuable tool for improving the texture of bakery products. By optimizing enzyme concentrations, our findings present a practical approach for the food industry, offering a viable solution to improve the overall quality and consumer satisfaction of bakery products.


Subject(s)
Food Industry , Hypocreales , Rainforest , Argentina
2.
J Food Sci ; 88(4): 1365-1377, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36789850

ABSTRACT

Laccase enzyme can replace chemical additives to improve texture properties and the volume of bread. Laccase encoding gene from Phlebia brevispora, a native fungus from Misiones, Argentina, was expressed in the generally recognized as safe yeast Kluyveromyces lactis. To improve laccase activity, medium conditions were optimized. The use of iron sulfate at a concentration of 1 mM led to optimum laccase activity (1289 U·L-1 ) on the fourth day of incubation. SDS-PAGE analysis revealed that the molecular mass of purified laccase was about 180 kDa. Optimum pH for the enzyme was 4 and optimum temperature was 40°C. Laccase exhibited high stability at low pH and high temperature. The application of recombinant laccase to bread decreased hardness, gumminess, and chewiness and increased bread volume. Based on these results, recombinant laccase from P. brevispora with improved yield is a good option for application as an improver of the physicochemical quality of bread at the industrial level. Besides, it will allow us to advance toward our goal of developing healthy alternatives for the bakery industry. No previous work has been reported concerning the heterologous expression of the laccase gene native to the province of Misiones, Argentina, with an aim for application in baking. PRACTICAL APPLICATION: Healthy bakeries became a trend in recent years. The use of the laccase enzyme increases the specific volume and decreases the hardness of bread, being thus an alternative for the replacement of chemical additives in the bakery industry.


Subject(s)
Kluyveromyces , Laccase , Argentina , Enzyme Stability , Hydrogen-Ion Concentration , Kluyveromyces/genetics , Kluyveromyces/metabolism , Laccase/genetics , Laccase/metabolism , Temperature , Cooking
SELECTION OF CITATIONS
SEARCH DETAIL
...